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Practical informations

e ©9h00-17h00

o @ 2 breaks morning and afternoon

o ¥4 Lunch at INRAE restaurant (not mandatory)
o ®) Questions are strongly encouraged

o IQ!Everyone has something to learn from each other
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Better knwow you

Who are you? What is your

o scientific topic?
nstitution /

_aboratory / e Studied

nosition ecosystem
e Scientific
guestion

e Experimental
design

©00

What is your
background?

e Already treated
shotgun data?

e Backgroundin
bioinformatics?
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Better know us

ASKFOR v

Migale Bioinformatics Facility

We provide several services for scientists to deal'with life sciencés data

Open infrastructure Dissem!
dedicated to life sciences

data processing

=

ination of expertise in
bioinformatics

Q
Design and development of
bioinformatics applications

Our Services

Data analysis

e Open infrastructure
dedicated to life sciences

= Computing resources,
tools, databanks...

Migale, one of the Collective Scientific Infrastructure of INRAE, is part of the BioinfOmics Research Infrastructure of INRAE for bioinformatics. It is
also a member of IFB (Institut Frangais de Bioinformatique), the French bioinformatics infrastructure and associated facility of France Génomique,
the French genomic infrastructure for which we contribute to support different developments in bioinformatics.

J Front

A free account gives you access to work and
save directories for your data, and access to
the computer farm for your analyses.

/& Tools

Command line tools, R packages and Galaxy
wrappers are available on request and
accessible to all migale authenticated users.

= Trainings

Each year, we offer our "Bioinformatics by
practicing” cycle. This cycle covers a broad
spectrum of bioinformatics. The modules mix
theoretical part and practical work.

<[> Computer farm

The cluster farm is composed of about a
thousand cores organized in different
queues. We use the Sun Grid Engine
queuing system for managing jobs.

S Databanks

We provide an access to a large set of public
biological ~databanks including whole
genomes, nucleic and proteic sequences and
other resources. They are updated
automatically with BioMaJ or upon request.

? Frequently asked questions
We answer to the most common questions
regarding the technical difficulties you can go
through on our infrastructure.

3 Galaxy

You have a free access to our Galaxy server.
Galaxy allows non-bioinformaticians to easily
run tools without technical knowledges.

%) Tutorials

We write tutorials to help you get familiar with
tools, best practices, languages, etc.

& Contact us

Find all the ways to contact us.

Dissemination of expertise in
vioinformatics

Design and development o
applications

e Data analysis
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Data analysis service

e We are specialized in
genomics/metagenomics R

e 3 Bioinformaticians and 2 Statisticians

e More than 140 projects since 2016
e 2 types of partnership

= Classical collaboration (we perfom the
analyses) #%

L]
lermont-Ferrand
° [
urillac
()
M@ier

= Accompaniment (we help you do the

analysis yourself) 1@\
00
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Our expectations

We are
bioinformaticians
thats what we do

Sample preparation

5“53"?"(5?7‘:,i‘ng

Gene identification

Lﬂ Novel genes

Discoveries...etc

o
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Aim of this training

After this 4 days training, you will:

e Know the outlines, advantages and limits of amplicon
sequencing data analysis

e Be able to use FROGS (through Galaxy) and phyloseq
(through easy16S) tools on the training data set

e Be able to identify tools and parameters adapted to your
own analyses
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Aim of this training
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Liu et al., 2020: A practical guide to amplicon and metagenomic analysis of microbiome data [1]
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Program

DAY 1 DAY 2 DAY 3 DAY 4
e Introduction e PERMANOVA and e Introduction to e FROGS (2)
e Dataimport on hypothesis tests amplicon analysis , rFRoGSfunc

: : 2
Easyl6S e Differential 2) | e Analysis of your
e aand f diversities abundance e |ntroductionto data
e Ordination e Analysis of Ravel Galaxy
and Mach data e Quality control
e Introduction to e FROGS (1)

amplicon analysis

(1)
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Introduction to amplicon analyses
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Meta-omics using next-generation sequencing
(NGS)
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Meta-omics using next-genertation sequencing

(NGS)
1 2

Collect an DMA extraction
environmental from environmental
sample sample

3

Amplify DNA
markers

4

High-throughput

sequencing
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Strengths and weaknesses of amplicon
analyses?

(GROIOR .

II:REPUBLICIQSLIJEE &%RA@
This work is licensed under a Creative Commons Attribution-Shab€Atke 2.0 Generic License

http://scrumblr.ca/strengths_weaknesses

16


http://scrumblr.ca/strengths_weaknesses
http://creativecommons.org/licenses/by-sa/2.0/

Strengths
e Detect subdominant microorganisms present in complex
samples > microbial inventories

e Get (approximate) relative abondances of different taxa in
samples

e Analyze and compare many taxa (hundreds) at the same
time

e Taxonomic profiles of the communities (usually up to genus
level, and sometimes up to species or strain)

e | ow cost
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Weaknesses

e Compositional data, many biases -> no absolute
quantification

e Exactidentification of the organisms difficult

e Hard to distinguish live and dead fractions of the
communities

e No functional view of the ecosystem
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The gene marker power
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3 Fig. 3. Three-dimensional ordination diagrams
M cultured showing distributions of (a) major Bacterial phyla,
it (b) genome-based 16S rRNA gene sequences and

(c) sequences from cultured and uncultured strains.
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Microbial tree

Hug et al., 2016: A new view of the tree of life [3]
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Story of barcoding

e Early 2000’s: beginning of barcoding

e 1st DNA barcode: 65 bases of the mitochondrial gene of Cytochrome Oxidase | (COl)
dedicated to the identification of vertebrates

e 2007: 1st international published database (BOLD)

e 2009: chloroplastic markers - RBCL (Ribulose Biphosphate Carboxylase; 553 pairs of
bases) and MATK (MATurase K; 879 pairs of bases) » standard markers for plants

e 2012:ITS, standard marker of fungi (length between 361-1475 bases in UNITE 7.1)

e 16S marker, mainly used for bacteria but no designated standard.
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Choice of a marker gene

The perfect / ideal gene marker:

is ubiquist

is conserved among taxa

is enough divergent to distinguish stains
is not submitted to lateral transfer

has only one copy in genome

has conserved regions to design specific primers

is enough characterized to be present in databases for taxonomic affiliation
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Bacterial targets

The genes that have been proposed for this task include those encoding :

e 165 /23S rRNA

e DNA gyrase subunit B (gyrB)

e RNA polymerase subunit B (rpoB)

e TU elongation factor (tuf)

e DNA recombinase protein (recA)

e protein synthesis elongation factor-G (fusA)

e dinitrogenase protein subunit D (nifD) ...

Bacterial lineages vary in their genomic contents, which suggests that different genes
might be needed to resolve the diversity within certain taxonomic groups.

©00
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The gene encoding the small subunit
of the ribosomal RNA

e The most widely used gene in molecular phylogenetic studies
e Ubiquist gene: 16S rDNA in prokayotes ; 18S rDNA in eukaryotes

e Geneencoding aribosomal RNA : non-coding RNA (not translated), part of the small
subunit of the ribosome which is responsible for the translation of mRNA in proteins

e Not submitted to lateral gene transfer
e Availability of databases facilitating comparison

= Silvav138.1-2021: available SSU/LSU sequences to over 10,700,000
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The 16S resolution
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16S rRNA copy number

Median of the number of 16S rRNA copies in 800
3,070 bacterial species according to data
reported in rrnDB database - 2018

n° of bacterial species

0

NS RO 0A D 0NDD M 00A

n® of rrs
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Espejo and Plaza, 2018: Multiple ribosomal RNA operons in bacteria; their concerted evolution and potential consequences on the rate of evolution of thelr 165 rRNA [5]
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16S rRNA copy variation

,E ___________________ 1 -ﬁi[ﬁﬂ A —— t RNA 23S rRNA 5S rRNA tRNA
M— 5 Jclsmpm—AHF—{ 1 T wn_Twm[wv][ v_Jvir—{HHI
P1/P2 ~. TA/T2
e :.,/, \\\\ / .. e :'// \\\ z . ';,' \\‘:: \,
16S rRNA rmA 1 23S rRNA rrlA 26
Total length 1,542 rmB 0 Total length 2,904 Ir/B 12
Total difference 33 /MC 6 Total difference 77 C 7
(2.14%) rmD 0 (2.65%) D 5
rrnE 9 rrlE 9
rmrnG 8 rrliG 12
rrnH 9 rrlH 6
[B] The positions of sequence variation [C] The number of bases that are different
within 16S and 23S rRNA are shown along from the conserved sequence are shown for
the gene organization of rrn operons. A 16S and 23S rRNA for each rrn operon

total of 33 and 77 differences were
identified in 16S rRNA and 23S rRNA,
respectively.
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Maeda et al., 2015: Strength and regulation of seven rRNA promoters in Escherichia coli [6]
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16S rRNA copy variation

e Only a minority of bacterial genomes harbors identical 16S rRNA gene copies

e Sequence diversity increases with increasing copy numbers

e While certain taxa harbor dissimilar 16S rRNA genes, others contain sequences common
to multiple species

(GROIOR .
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gyrB: an alternative of 16S

e Asingle-copy housekeeping gene that encodes the subunit B of DNA gyrase, a type |l
DNA topoisomerase, and therefore plays an essential role in DNA replication.

e Essential and ubiquitous in bacteria
e Higher rate of base substitution than 16S rDNA does
e Sufficiently large in size for use in analysis of microbial communities.

e Also present in Eukarya and sometimes in Archaea but it shows enough sequence
dissimilarity between the three domains of life to be used selectively for Bacteria.
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Poirier, Rué et al., 2019: Deciphering intra-species bacterial diversity of meat and seafood spoilage microbiota using gyrB amplicon sequencing: Acomparatlve analysis with 16S rDNA V3-V4 amplicon sequencing [7]
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Fungal ITS

ITS: Internal Transcribed Spacer

e Size polymorphism of ITS (from 361 to 1475 bases in UNITE 7.1)

e Highly conserved regions of the neighboring of ITS1 and ITS2

e Lack of a generalist and abundant ITS databank (several small specialized databanks)

Multiple copies (14 to 1400 copies (mean at 113, median at 80))
FROGS deals very good with ITS [8]

= small and long fragments contrary to many tools
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Planning an experiment
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Bharti and Grimm, 2019: Current challenges and best-practice protocols for microbiome analysis [10]
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Experimental design: challenges and
solutions

e |n general, any hypothesis should primarily be supported by meticulous literature
driven evidence and preliminary testing using small-scale/pilot studies to avoid
uncertainty in biological signals, trials and failures

= Number of samples: variability between similar samples / choosing appropriate
sample sizes based on statistical principles can certainly help to avoid biases and
spurious interpretations

= Controls: needed to identify whether a signal is real and not just a stochastic or
spurious result

= Cross-sectional or longitudinal studies: it is equally important to cautiously plan
identical sample collection times for each replicate to avoid biases

= Metadata: help to avoid false interpretation of results and highlights the effective

size of individual factors ‘@ ®O
| - |
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Sample collection and handling

e Contamination: changes in temperature, humidity, or other factors could alter or
contaminate samples. Minimizing the time of sample collection and using aseptic
laboratory resources, including gloves, masks and head covers, help to reduce
contamination

e Transportation: Transit conditions and duration can influence the quality and quantity
of extracted nucleic acids

e Storage and safety: Several studies have assessed the effect of storage conditions on
compositional changes in microbial samples

©00
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DNA extraction and preparation

e mechanical lysis/bead beating or chemical lysis

e amplification using barcode primer pairs, purification, and preparation of purified DNA
libraries are done before sequencing

= universal primers are not so universal [11]

= amplification bias
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Amplification bias

e Amplification by PCR has

sequence-dependence efficiency,

especially the sequence that binds to primers.

e |[f one sequence is amplified 10% more than anotherin one
round, it will be 1.130=17.4 x more abundant after 30

rounds.

e This effect is most important when the sequence has one or
more mismatches with the primer.

e With one mismatch, amp
significantly less, and wit
seguence may hot be am

ification efficiency is usually
N two or more mismatches the

[©NOIONS detectable levels.
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Amplification bias
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Sequencing technologies
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Sequencing technologies

First generation Second generation Third generation

(next generation sequencing)

-

g [

Sanger sequencing 454, Solexa, PacBio
Maxam and Gilbert lon Torrent, Oxford Nanopore
Sanger chain termination lllumina
Infer nucleotide identity using dNTPs, High throughput from the Sequence native DNA in real time
then visualize with electrophoresis parallelization of sequencing reactions with single-molecule resolution
500-1,000 bp fragments ~50-500 bp fragments | | Tens of kb fragments, on average
Short-read sequencing Long-read sequencing
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Sequencing technologies

Table 2 Comparison between next-generation sequencing technologies

Method lllumina Pacific Bio Nanopore Pyrosequencing (454) SOLID
Read length perrun  50-300 base pair 10-25 kilo base pair 500-2.3 mega base pair Approximate 800 base 50 base pair
pair
Time taken perrun  1to 10 days Upto30h 1 min-72h 24 h 1 to 2 weeks
Cost $148 per Gb $2000 Gb $60-80 per sample $7000 per sample $15,000 per 100 Gb
Accuracy 98% 99.9% 98.9-99.6% 99.9% 99.9%
Advantages Cost-effective, high- Fast, long read lengths  Real-time analysis, long  Fast, long read lengths ~ High accuracy

yield sequence reads

read lengths

Disadvantages Instrument cost, high Low high throughput  Error prone Homopolymer error Long run time, low read
maintenance of instru- length
ment, read length
REPUBLIQUE
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lllumina technology

Step 1 : Amplification of selected fragments

sl Specific primer

(Amplification of the
targeted DNA region)

5'- TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG - 3

MiSeq Adapter Linl
(hybridization to the (primer hybridization)
flowcell)

Index
(sample multiplexing)

ATCGTACG - Sample 1
ACTATCTG - Sample 2
TAGCGAGT - Sample 3
CTGCGTGT - Sample 4
TCATCGAG - Sample 5

5 w— 3 S — Amplificati
) Specific primer _, Amplification g
HEtgrOgenEIFv =pacar Forward | Fragment of interest ) o
(increase diversity 5’ - — -3’ Specific primer
during the first sequencing cycles Amplification €G———— Reverse
for cluster identification) . N
ACAG ACTGTC
ACAG A ACTGTC leverse
ACAG AC ACTGTC
ACAG ACT ACTGTC 5'- GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG - 3’
Tl
= =
e

Step 2 : Add Illumina adaptor sequences and indexes to multiplex samples

5'- AATGATACGGCGACCACCGAGATCTACAC - 3’
Adapter PS
5’ -TCGTCGGCAGCGTC - 3’

5 L’ P/ 3 \
A -—) Ampfrﬁcat'ron

Index ig
3 - - B

5

— -5’
-3

LI
Amplification e Index i,

5’- GTCTCGTGGGCTCGG - 3’
Adapter P7
5'- CAAGCAGAAGACGGCATACGAGAT - 3’

©00

REPUBLIQUE
This work is licensed under a Creative Commons Attribution-Shat¥AfKE 2. &%er’?‘@c License™

I mtn mzc

Cruaud et al., 2017: High-throughput sequencing of multiple amplicons for barcoding and integrative taxonomy [13]

42


http://creativecommons.org/licenses/by-sa/2.0/

lllumina technology

Genomic DNA

W

shear ¢

— - —  Select ~200-300 bp fragments

¢ R -
attach adapters to
create sequencing library ¢

cluster generation by
solid phase PCR
(bridge amplification)

sequencing by synthesis with reversible terminators

N 'Y

4 — — —

(C] © ]
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lllumina technology
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Effect of sequencing technology

b Platform Hypervariable region  Sample
| Hiseq | Shotgun 168 | st
Pl I osrux+ | vis | st3
I miseq I v s17
I PacBio I va | s
e I v+ I s
o? ‘e i Miaq (V4] I tesun I s22
i ° s MiSeq (V4) F=
8 °°¢ 8] GS FLX+ (V14) Mean abundance (%) $31
= g “«
>‘ o L) g. PacBio (16 full) [ | H ';‘::
P Rl * 0 0z 30
et e . I s»
1 % © o =
oo ]
: | sas
$ 569
o

o [ smo
/ '\":%\ | =
5108
- € = 5121

PC3 (5.57%) S

PC1 (11.92%)

Fecal samples collected from 19 human subjects were sequenced using the indicated platforms: GS FLX+ (VI-4, red),
Ilumina MiSeq (V1-3, light blue; V3-4, blue; V4, dark blue), and PacBio CCS (V1-9, green). Whole-genome shotgun
sequences generated by Illumina HiSeq (Shotgun 16 S, orange) were included as a reference for community structure
without amplification bias. (a) The sequence data were clustered using a UPGMA dendrogram based on the Bray-Curtis
dissimilarity matrix, and samples from the same individual are shown in the same color. The relative abundances of
bacterial taxa are displayed as a heatmap over 27 families (>1% relative abundance). (b) The sequence data were

clustered by principal component analysis.
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Sequencing biases

e Contamination between samples during the same run

e Contamination during successive runs (residual
contaminants)

e Variability between runs: take into account for experimental
plan

e Variability inside run: add some controls
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Interest of controls

Figure 1

From: Reagent and laboratory contamination can critically impact sequence-based microbiome analyses

Proportion of total sequences
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Summary of 165 rRNA gene sequencing taxonomic assignment from ten-fold diluted pure cultures and controls. Undiluted DNA extractions contained

3 Undlassified
TM7 classincertae sedis
Spirachsetes

# Sphingobacteria

= Negativicutes

¥ Gemmatimanadetes

m Gammaproteobacteria

 Fusobacteria

u Flavobacteria

# Epsilonproteobacteria

¥ Dekaproteobacteria

wDeinococel

# Clostridia

# Betaproteobacteria
Bacteroidia

wBacill

B Armatimonadia
Alphaprotecbacteria
Actinobacteria
Acidobacteria Gp2

 Acidobacteria Gp3

B Sbongori

Other genera

® Preudomonas

= Acinetobacter

W Undassified Enterobactereiaceae

® Enterobacter

 Chryseobacterium
Massika

# Dektia

B Undassified Burkholderiaceae

 Ralstonia

= Burkholderia

W Streptococcus.

wFacklamia
Sphingomon as

 Ochrobactrum
Proplonibacterium
Rhodococcus
Arthrobadter
Microbacterium
Curtobacterium
Corynebacterium
Acidobacteria Gp2

approximately 10® cells, and controls (annotated in the Figure with 'con') were template-free PCRs. DNA was extracted at ICL, UB and WTSI laboratories and

amplified with 40 PCR cycles. Each column represents a single sample; sections (a) and (b) describe the same samples at different taxonomic levels. a)

Proportion of S. bongori sequence reads in black. The proportional abundance of non-Salmonella reads at the Class level is indicated by other colours. As the

sample becomes more dilute, the proportion of the sequenced bacterial amplicons from the cultured microorganism decreases and contaminants become

more dominant. b) Abundance of genera which make up >0.5% of the results from at least one laboratory, excluding S. bongori. The profiles of the non-

Salmonella reads within each laboratory /kit batch are consistent but differ between sites.
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Interest of controls

Table 1 List of contaminant genera detected in sequenced negative ‘blank' controls

From: Reagent and laboratory contamination can critically impact sequence-based microbiome analyses

Phylum

List of constituent contaminant genera

Proteobacteria

Alpha-proteobacteria:

Afipia, Aquabacterium®, Asticcacaulis, Aurantimonas, Beijerinckia, Bosea, Bradyrhizobium®, Brevundimonas®, Caulobacter, Craurococcus, Devosia, Hoeflea®, Mesorhizobium,
Methylobacterium®, Novosphingobium, Ochrebactrum, Paracoccus, Pedomicrobium, Phyllobacterium®, Rhizobium®%, Roseomonas, Sphingobium, Sphingomonas=%<, Sphingopyxis

Beta-proteobacteria:

Acidovorax~, Azoarcus®, Azospira, Burkholderia®, Comamonas®, Cupriavidus<, Curvibacter, Delftia®, Duganella®, Herbaspirillum®<, Janthinobacterium®, Kingella, Leptothrix®,
Limnobacter, Massilia®, Methylophilus, Methyloversatiliss, Oxalobacter, Pelomonas, Polaromonas®, Ralstenia®c4e, Schlegelella, Sulfuritalea, Undibacterium®, Variovorax

Gamma-proteobacteria:

Acinetobacter®d<, Enhydrobacter, Enterobacter, Escherichia®“%¢, Nevskia®, Pseudomonas®3€, pseudoxanthomonas, Psychrobacter, Stenotrophomonas®®<3¢ xanthomonas®

Actinobacteria

Aeromicrobium, Arthrobacter, Beutenbergia, Brevibacterium, Corynebacterium, Curtobacterium, Dietzia, Geodermatophilus, Janibacter, Kocuria, Microbacterium, Micrococcus,
Microlunatus, Patulibacter, Propionibacterium®, Rhodococcus, Tsukamurella

Firmicutes

Abiotrophia, Bacillus®, Brevibacillus, Brochothrix, Facklamia, Paenibacillus, Streptococcus

Bacteroidetes

Chryseobacterium, Dyadobacter, Flavobacterium®, Hydrotalea, Niastella, Olivibacter, Pedobacter, wautersiella

Deinococcus-
Thermus

Deinococcus

Acidobacteria

Predominantly unclassified Acidobacteria Gp2 organisms

The listed genera were all detected in sequenced negative controls that were processed alongside human-derived samples in our laboratories (WTSI, ICL
and UB) over a period of four years. A variety of DNA extraction and PCR kits were used over this period, although DNA was primarily extracted using
the FastDNA SPIN Kit for Soil. Genus names followed by a superscript letter indicate those that have also been independently reported as contaminants
previously. “also reported by Tanner et al. [12]; balso reported by Grahn et al. [14]; “also reported by Barton et al. [17]; dalso reported by Laurence et al. [18];

€also detected as contaminants of multiple displacement amplification kits (information provided by Paul Scott, Wellcome Trust Sanger Institute). ICL,

Imperial College London; UB, University of Birmingham; WTSI, Wellcopasa

QNOI®
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[llustration

Here, we showed that contaminant OTUs
from extraction and amplification steps can
represent more than half the total sequence
yield in sequencing runs, and lead to
unreliable results when characterizing tick
microbial communities. We thus strongly
advise the routine use of negative controls in
tick microbiota studies, and more generally
in studies involving low biomass samples
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Synthetis of biases
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Observed bias by bacterium. The observed bias (the observed minus the actual proportions) for each
bacterium in the experimental design due to the different effects of our DNA Extraction, PCR amplification,
and sequencing and taxonomic classification protocols. The total bias is also plotted for each bacterium. For
each box and whisker plot, only the samples including the bacterium were included.
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Synthesis
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A pile of pipelines

Single-end data s Pre-processing
Raw data
AMPtk Anacapa  BIOCOM-PIPE Cascabel CoMA DADA2 dadasanke APSCALE Sm—OTUs workflow
Barque ASVs workflow
eDNAflow FROGS gDAT JAMP  LotuS2 MetaWorks MICCA  mothur )
Dadaist2 . N
DANIEL Paired-end QO  Optional steps
NextITS nf-core/ampliseq  OBITools PipeCraft2 QIME2  SCATA PIPITS data Demultiplexing
SEED2 USEARCH VSEARCH Tourmaline VTAM FEMA *
Quality filtering
N *
] . . . *1
Denoising D Merging paired-end reads

3
Artifacts filtering

‘Taxonomy assignment [}é Clustering‘d

FIGURE 1 Examples of basic bioinformatics workflows for metabarcoding data. The workflow begins with demultiplexing, assigning
reads to respective samples based on unique molecular identifiers. Next, quality filtering removes low-quality reads to reduce errors and

oty Web improve reliability. Denoising algorithms identify and correct sequencing errors while preserving biological variation. For paired-end reads,
merging combines forward and reverse reads into single-end sequences. Artifacts filtering aims to remove artifacts such as chimeras and
D:\:/J}:l?\\-/‘ Galaxy NUMTs. Clustering groups of sequences into features. Finally, taxonomic assignment of the features against a reference database. * Primer
cluster trimming between any of these steps can be applied. *1 Only for paired-end data (may be performed before or after quality filtering).
*2 Error correction; formation of ASVs. *3 Including chimera filtering, off-target gene removal (pseudogene removal, ITS extraction). *4
@ : Formation of OTUs/swarm-clusters.
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Benchmarking
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Benchmarking
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Quality parameters obtained with the
seven bioinformatics pipelines. A)
Recall rate (TP/(TP+FN)) reflects the
capacity of the tools to detect
expected species. B) Precision
(TP/(TP+FP)) shows the fraction of
relevant species among the retrieved
species. C) Divergence rate is the Bray-
Curtis distance between expected and
observed species abundance. D.
Percentage of perfectly reconstructed
sequences is the fraction of predicted
sequences with 100% of identity with
the expected ones.
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Conclusion 1: sequencing data do not
contain exactly what you sampled...

s

REPUBLIQUE <S—)-
This work is licensed under a Creative Commons Attribution-Shaf&AfkE > SRR Lllcgn.sleq 0 l@

58


http://creativecommons.org/licenses/by-sa/2.0/

Summary

Potential
biases

Potential
controls

Sample collection

DNA dynamics 0&

(~season, system, organism)

Undersampling
Contamination from past/neighbouring events
Experimental contamination

DNA
extraction

Undersampling

Taxon-specific inefficiency
Experimental contamination

DNA
amplification

reagents/aerosols contaminants

+ Polymerase errors/chimeras
+ Inappropriate primers

High-throughput

sequencing

+ Tag/index jump &
sequencing errors

Inappropriate filtering thresholds
Mis-classifications

Bioinformatic
filtering

- Expected target (or non-target) taxa
- Building of a local reference database

- Pilot experiment

- Biological replicates
- Field negative controls

\

- Technical replicates
- Extraction negative controls
- Positive controls

- Technical replicates
- PCR negative controls
- Positive controls
- Use of multiple primer set
or in silico pre-evaluation of

primers

- Tagging system
negative controls
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(- Filtering/clustering criteria and

threshold adjustments based on

\

all controls and replicates
- Taxonomic congruence with a
priori expectations

J
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Conclusion 2: ... but you now know how to
deal with
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Key advices

e Discuss with all partners (bioinformaticians & statisticians)
involved in the project
= scientific aspects
= financial aspects

e Use controls!

e |f possible, perform a preliminary analysis

(GROIOR .
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